Transform	Equations
Fourier Series (FS)	$c_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) e^{-int} dt$ and $f(t) = \sum_{\infty}^{\infty} c_n e^{int}$
	frequency: discrete, time: continuous
Fourier Transform (FT)	$F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-i\omega t}dt$ and $f(t) = \frac{1}{2\pi}\int_{-\infty}^{\infty} F(\omega)e^{i\omega t}d\omega$
	frequency: continuous, time: continuous
Z Transform (ZT)	$X(z) = \sum_{n=0}^{\infty} x[n] z^{-n}$ and $x[n] = \frac{1}{2\pi i} \int_{C} X(z) z^{n-1} dz$
	$(\overset{0}{C}$ is a closed contour in the ROC)
	frequency: continuous, time: discrete
Laplace Transform (LT)	$F(s) = \int_0^\infty f(t)e^{-st}dt$ and $f(t) = \frac{1}{2\pi i}\int_L F(s)e^{st}ds$
	(L is the Laplace inversion contour)
	frequency: continuous, time: continuous
	analytic in $1/2$ of the frequency plane
DTFT	$X(\omega) = \sum_{-\infty}^{\infty} x[n] e^{-i\omega n} \text{ and } x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\omega) e^{i\omega n} d\omega$
	frequency: continuous, time: discrete
DFT	$X_k = \sum_{n=1}^{N-1} x_n e^{-\frac{2\pi i}{N}kn}$ and $x_n = \frac{1}{N} \sum_{n=1}^{N-1} X_k e^{\frac{2\pi i}{N}kn}$
	$ \begin{array}{c} n=0 \\ \text{for k, n = 0,, N-1} \end{array} $
	frequency: discrete, time: discrete
	Transforms.