Transform	Equations
Fourier Series (FS)	$\begin{aligned} & \hline \hline c_{n}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(t) e^{-i n t} d t \text { and } f(t)=\sum_{-\infty}^{\infty} c_{n} e^{i n t}, \end{aligned}$ frequency: discrete, time: continuous
Fourier Transform (FT)	$\begin{gathered} F(\omega)=\int_{-\infty}^{\infty} f(t) e^{-i \omega t} d t \text { and } f(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} F(\omega) e^{i \omega t} d \omega \\ \text { frequency: continuous, time: continuous } \end{gathered}$
Z Transform (ZT)	$X(z)=\sum_{0}^{\infty} x[n] z^{-n} \text { and } x[n]=\frac{1}{2 \pi i} \int_{C} X(z) z^{n-1} d z$ (C is a closed contour in the ROC) frequency: continuous, time: discrete
Laplace Transform (LT)	$F(s)=\int_{0}^{\infty} f(t) e^{-s t} d t \text { and } f(t)=\frac{1}{2 \pi i} \int_{L} F(s) e^{s t} d s$ (L is the Laplace inversion contour) frequency: continuous, time: continuous analytic in $1 / 2$ of the frequency plane
DTFT	$\begin{gathered} X(\omega)=\sum_{-\infty}^{\infty} x[n] e^{-i \omega n} \text { and } x[n]=\frac{1}{2 \pi} \int_{-\pi}^{\pi} X(\omega) e^{i \omega n} d \omega \\ \text { frequency: continuous, time: discrete } \end{gathered}$
DFT	$\begin{gathered} X_{k}=\sum_{n=0}^{N-1} x_{n} e^{-\frac{2 \pi i}{N} k n} \text { and } x_{n}=\frac{1}{N} \sum_{k=0}^{N-1} X_{k} e^{\frac{2 \pi i}{N} k n} \\ \quad \text { for } \mathrm{k}, \mathrm{n}=0, \ldots, \mathrm{~N}-1 \end{gathered}$ frequency: discrete, time: discrete

